• Contact Us
  • News
  • Events
geosoftware-logo
  • Software
    • HampsonRussell
    • Jason
    • PowerLog
    • InsightEarth
  • Services
  • Solutions
    • Seismic Reservoir Characterization
    • Advanced Seismic Interpretation
    • Machine Learning
    • Petrophysics
    • Rock Physics
    • Velocity Modeling
  • Support
  • Resources
    • Webinars
    • Training
    • Software Updates
    • Software Tips & Tricks
    • Careers
    • Partners

Request Software Trial

menu
  • Software
    • HampsonRussell
    • Jason
    • PowerLog
    • InsightEarth
  • Services
  • Solutions
    • Seismic Reservoir Characterization
    • Advanced Seismic Interpretation
    • Machine Learning
    • Petrophysics
    • Rock Physics
    • Velocity Modeling
  • Support
  • Resources
    • Webinars
    • Training
    • Software Updates
    • Software Tips & Tricks
    • Careers
    • Partners
    Request Software Trial
  • HampsonRussell WellGen Workshop

     

    November 6th, 2023 from from 9:00 AM - 5:00 PM
    Online (Central Time), Houston Texas
     

     

    Learning Objectives

    This course presents an introduction to the practical use of deep neural networks (DNNs) to predict elastic and rock properties as well as an overview of relevant machine learning theory. In these supervised learning workflows, the relationship mapping the seismic to the properties of interest are learned from the data itself. Key to deriving robust operators is big data. This course shows how to generate and incorporate synthetic data (WellGen) in the machine learning workflow (Emerge) to get more reliable estimates.

    Audience

    Geophysicists, geologists, engineers and technical staff who want to understand the theory and learn how to apply these increasingly critical techniques. It would be helpful for the student to have experience with HampsonRussell AVO, Strata and Emerge as this software is used in the exercises. Having said this, the exercises are self-contained and do not require prior knowledge of this software.

    Content

    • Introduction to deep neural networks (DNNs) and the need for big datasets.
    • Creating big data by generating synthetic well and seismic data.
    • Examples showing how the inclusion of synthetic data improves the property estimates.
    • Lithofacies Classification, Rock Physics Modeling, Statistics, Variogram modelling, Well Simulations.
    • Generating synthetic seismic data using AVO modelling
    • Seismic data preparation including correlation, generation of angle gathers and scaling.
    • Supervised learning, multi-linear regression and deep neural networks.
    • Generation and selection of seismic attributes for use with supervised learning.
    • Quality controlling the results including cross-plotting.
    • Explains both the theory and practice of deep neural networks using WellGen and Emerge.
    • The workshop demonstrates a complete workflow showing how to estimate elastic (e.g. P-wave impedance, Vp/Vs and density) and rock properties (e.g. Porosity, Saturation) using both real and synthetic data. These data science-based (DNN) estimates are compared with theory-based (inversion) estimates.
    • Teaches the user how to apply WellGen and Emerge using a real Gulf of Mexico gas sand example.

     

     

    Duration: 1 day
    Software used: HampsonRussell WellGen
    Course Format: Instructor-led, workflow-based, classroom or virtual training
    Instructor(s): Ted Holden
    Prerequisites: None

     

    Price:

    US $1000.00 USD

  • Register Here

  • Software
    • HampsonRussell
    • Jason
    • PowerLog
    • InsightEarth
  • Team Solutions
    • Seismic Reservoir Characterization
    • Advanced Seismic Interpretation
    • Machine Learning Environment
    • Rock Physics
    • Velocity Modeling
    • Petrophysics
  • Resources
    • Webinars
    • Software Training
    • Software Updates
    • Software Tips & Tricks
    • News
    • Careers
    • Partners
  • Contact Us
    • Support & Regional Contacts
    • Support Portal
    • Privacy Policy
    • Request Software Trial
geosoftware logo
© 2024 GeoSoftware. All Rights Reserved